Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Uniform InSb quantum dots buried in narrow-gap InAs(Sb,P) matrix

Identifieur interne : 000251 ( Main/Repository ); précédent : 000250; suivant : 000252

Uniform InSb quantum dots buried in narrow-gap InAs(Sb,P) matrix

Auteurs : RBID : Pascal:13-0310619

Descripteurs français

English descriptors

Abstract

The heterostructures with self-assembled InSb quantum dots (QDs) with density (up to 1010 cm-2) were obtained on the InAs-rich (100)-oriented surface by combining technology including liquid phase epitaxy and metalorganic vapor phase epitaxy. Using of the multicomponent In-As-Sb-P solid solutions lattice-matched with InAs substrate as matrix layers allows changing the surface chemistry of a matrix material. High-resolution cross-section images of the coherent InSb QDs buried into the InAs(Sb,P) matrix were obtained by transmission electron microscopy. It was experimentally demonstrated that self-assembled InSb QDs can be formed on InAs-rich surface in Stranski-Krastanow mode. The optimal thickness of the wetting layer was dependent on matrix surface chemistry: 2 nm-thick for the binary InAs surface and 1.3 nm-thick for the quaternary InAsSbP one were found.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0310619

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Uniform InSb quantum dots buried in narrow-gap InAs(Sb,P) matrix</title>
<author>
<name sortKey="Moiseev, Konstantin" uniqKey="Moiseev K">Konstantin Moiseev</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Ioffe Institute, Politekhnicheskaya 26</s1>
<s2>Saint-Petersburg 194021</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>Saint-Petersburg 194021</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Parkhomenko, Yana" uniqKey="Parkhomenko Y">Yana Parkhomenko</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Ioffe Institute, Politekhnicheskaya 26</s1>
<s2>Saint-Petersburg 194021</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>Saint-Petersburg 194021</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nevedomsky, Vladimir" uniqKey="Nevedomsky V">Vladimir Nevedomsky</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Ioffe Institute, Politekhnicheskaya 26</s1>
<s2>Saint-Petersburg 194021</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>Saint-Petersburg 194021</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0310619</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0310619 INIST</idno>
<idno type="RBID">Pascal:13-0310619</idno>
<idno type="wicri:Area/Main/Corpus">000698</idno>
<idno type="wicri:Area/Main/Repository">000251</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0040-6090</idno>
<title level="j" type="abbreviated">Thin solid films</title>
<title level="j" type="main">Thin solid films</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antimony</term>
<term>Calcium nitride</term>
<term>Cross section</term>
<term>Cross sections</term>
<term>Heterostructures</term>
<term>III-V compound</term>
<term>III-V semiconductors</term>
<term>Indium antimonides</term>
<term>Indium arsenides</term>
<term>Indium compounds</term>
<term>LPE</term>
<term>MOVPE method</term>
<term>Nanostructured materials</term>
<term>Quantum dots</term>
<term>Self-assembly</term>
<term>Solid solutions</term>
<term>Surface chemistry</term>
<term>Transmission electron microscopy</term>
<term>VPE</term>
<term>Wettability</term>
<term>Wetting</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Semiconducteur III-V</term>
<term>Composé III-V</term>
<term>Point quantique</term>
<term>Nanomatériau</term>
<term>Hétérostructure</term>
<term>Autoassemblage</term>
<term>Epitaxie phase liquide</term>
<term>Epitaxie phase vapeur</term>
<term>Méthode MOVPE</term>
<term>Solution solide</term>
<term>Chimie surface</term>
<term>Section efficace</term>
<term>Coupe transversale</term>
<term>Microscopie électronique transmission</term>
<term>Antimoniure d'indium</term>
<term>Arséniure d'indium</term>
<term>Antimoine</term>
<term>Nitrure de calcium</term>
<term>Mouillage</term>
<term>Mouillabilité</term>
<term>Composé de l'indium</term>
<term>InSb</term>
<term>InAs</term>
<term>InAsP</term>
<term>Substrat InAs</term>
<term>InAsSbP</term>
<term>8107T</term>
<term>8535B</term>
<term>8107B</term>
<term>8116D</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Antimoine</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The heterostructures with self-assembled InSb quantum dots (QDs) with density (up to 10
<sup>10 </sup>
cm
<sup>-2</sup>
) were obtained on the InAs-rich (100)-oriented surface by combining technology including liquid phase epitaxy and metalorganic vapor phase epitaxy. Using of the multicomponent In-As-Sb-P solid solutions lattice-matched with InAs substrate as matrix layers allows changing the surface chemistry of a matrix material. High-resolution cross-section images of the coherent InSb QDs buried into the InAs(Sb,P) matrix were obtained by transmission electron microscopy. It was experimentally demonstrated that self-assembled InSb QDs can be formed on InAs-rich surface in Stranski-Krastanow mode. The optimal thickness of the wetting layer was dependent on matrix surface chemistry: 2 nm-thick for the binary InAs surface and 1.3 nm-thick for the quaternary InAsSbP one were found.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0040-6090</s0>
</fA01>
<fA02 i1="01">
<s0>THSFAP</s0>
</fA02>
<fA03 i2="1">
<s0>Thin solid films</s0>
</fA03>
<fA05>
<s2>543</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Uniform InSb quantum dots buried in narrow-gap InAs(Sb,P) matrix</s1>
</fA08>
<fA09 i1="01" i2="1" l="FRE">
<s1>International Conference NanoSEA (NANOstructures SElf Assembly) 2012</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>MOISEEV (Konstantin)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>PARKHOMENKO (Yana)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>NEVEDOMSKY (Vladimir)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>BERBEZIER (Isabelle)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>DE CRESCENZI (Maurizio)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Ioffe Institute, Politekhnicheskaya 26</s1>
<s2>Saint-Petersburg 194021</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>IM2NP-CNRS</s1>
<s2>Marseille</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>University of Roma "Tor Vergata"</s1>
<s2>Roma</s2>
<s3>ITA</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA20>
<s1>74-77</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13597</s2>
<s5>354000501544010170</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>17 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0310619</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Thin solid films</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The heterostructures with self-assembled InSb quantum dots (QDs) with density (up to 10
<sup>10 </sup>
cm
<sup>-2</sup>
) were obtained on the InAs-rich (100)-oriented surface by combining technology including liquid phase epitaxy and metalorganic vapor phase epitaxy. Using of the multicomponent In-As-Sb-P solid solutions lattice-matched with InAs substrate as matrix layers allows changing the surface chemistry of a matrix material. High-resolution cross-section images of the coherent InSb QDs buried into the InAs(Sb,P) matrix were obtained by transmission electron microscopy. It was experimentally demonstrated that self-assembled InSb QDs can be formed on InAs-rich surface in Stranski-Krastanow mode. The optimal thickness of the wetting layer was dependent on matrix surface chemistry: 2 nm-thick for the binary InAs surface and 1.3 nm-thick for the quaternary InAsSbP one were found.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A07T</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D03F18</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A07B</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B80A16D</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Point quantique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Quantum dots</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Hétérostructure</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Heterostructures</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Autoassemblage</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Self-assembly</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Epitaxie phase liquide</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>LPE</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Epitaxie phase vapeur</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>VPE</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Méthode MOVPE</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>MOVPE method</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Método MOVPE</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Solution solide</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Solid solutions</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Chimie surface</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Surface chemistry</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Section efficace</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Cross sections</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Coupe transversale</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Cross section</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Corte transverso</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Microscopie électronique transmission</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Transmission electron microscopy</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Antimoniure d'indium</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Indium antimonides</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Arséniure d'indium</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Antimoine</s0>
<s2>NC</s2>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Antimony</s0>
<s2>NC</s2>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Nitrure de calcium</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Calcium nitride</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Calcio nitruro</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Mouillage</s0>
<s5>29</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Wetting</s0>
<s5>29</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Mouillabilité</s0>
<s5>30</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Wettability</s0>
<s5>30</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Composé de l'indium</s0>
<s5>31</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Indium compounds</s0>
<s5>31</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>InSb</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>InAs</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>InAsP</s0>
<s4>INC</s4>
<s5>48</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Substrat InAs</s0>
<s4>INC</s4>
<s5>49</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>InAsSbP</s0>
<s4>INC</s4>
<s5>50</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>8107T</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>8535B</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>8107B</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>8116D</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>294</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>International Conference NanoSEA (NANOstructures SElf Assembly) 2012</s1>
<s2>4</s2>
<s3>Santa Margherita di Pula, Sardinia ITA</s3>
<s4>2012-06-25</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000251 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000251 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0310619
   |texte=   Uniform InSb quantum dots buried in narrow-gap InAs(Sb,P) matrix
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024